gala-anteater/0001-add-new-feature-slow-node-detection.patch

778 lines
29 KiB
Diff
Raw Normal View History

2024-11-05 16:44:53 +08:00
From 2e30b68154f5d0b6a68eab1bf8408363bbf28a76 Mon Sep 17 00:00:00 2001
From: huangbin <huangbin58@huawei.com>
Date: Tue, 5 Nov 2024 15:37:00 +0800
Subject: [PATCH] add new feature slow node detection
---
anteater/model/detector/slow_node_detector.py | 397 ++++++++++++++++++
config/module/slow_node_detection.job.json | 352 ++++++++++++++++
2 files changed, 749 insertions(+)
create mode 100644 anteater/model/detector/slow_node_detector.py
create mode 100644 config/module/slow_node_detection.job.json
diff --git a/anteater/model/detector/slow_node_detector.py b/anteater/model/detector/slow_node_detector.py
new file mode 100644
index 0000000..15a6cee
--- /dev/null
+++ b/anteater/model/detector/slow_node_detector.py
@@ -0,0 +1,397 @@
+#!/usr/bin/python3
+# ******************************************************************************
+# Copyright (c) 2023 Huawei Technologies Co., Ltd.
+# gala-anteater is licensed under Mulan PSL v2.
+# You can use this software according to the terms and conditions of the Mulan PSL v2.
+# You may obtain a copy of Mulan PSL v2 at:
+# http://license.coscl.org.cn/MulanPSL2
+# THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
+# EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
+# MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
+# See the Mulan PSL v2 for more details.
+# ******************************************************************************/
+import time
+import json
+import os.path
+import pprint
+import traceback
+from typing import List
+
+import numpy as np
+import pandas as pd
+
+from anteater.core.slow_node_response import AIJobDetectResult, ResultCode, NodeData
+from anteater.core.anomaly import Anomaly, RootCause
+from anteater.core.kpi import KPI, ModelConfig, Feature
+from anteater.utils.datetime import DateTimeManager as dt
+from anteater.utils.timer import timer
+from anteater.utils.log import logger
+from anteater.source.metric_loader import MetricLoader
+from anteater.model.detector.base import Detector
+from anteater.model.process.rank_table_loader import GroupDataLoader
+from anteater.model.algorithms.slow_node_algs import time_node_detectors, space_node_detectors
+
+
+class SlowNodeDetector(Detector):
+ def __init__(self, data_loader: MetricLoader, config: ModelConfig, **kwargs):
+ """The detector base class initializer"""
+ super().__init__(data_loader, **kwargs)
+ self.config = config
+ self.max_num_normal_results = self.config.params.get("max_num_normal_results", 10)
+ self.record_kpi_value = self.config.params.get("record_kpi", False)
+ self.hccl_domain, self.rank_table = self._init_hccl_and_rank_table()
+
+ def _init_hccl_and_rank_table(self):
+ params = self.config.params
+ hccl_domain_path = params.get("hccl_domain_json")
+ rank_table_path = params.get("rank_table_json")
+
+ hccl_domain = {}
+ rank_table = {}
+
+ if os.path.exists(hccl_domain_path):
+ try:
+ with open(rank_table_path, 'r', encoding='utf-8') as f_out:
+ hccl_domain = json.load(f_out)
+ except Exception:
+ logger.error(f"Read hccl domain info fail!")
+ if os.path.exists(rank_table_path):
+ try:
+ with open(rank_table_path, 'r', encoding='utf-8') as f_out:
+ rank_table = json.load(f_out)
+ except Exception:
+ logger.error(f"Read rank table info fail!")
+
+ return hccl_domain, rank_table
+
+ @staticmethod
+ def npu_id2host_id(machines2devices: dict):
+ npu_id2host_id_dict = {}
+ npu_ids = []
+ hosts_ids = []
+ for machine_ip, devices in machines2devices.items():
+ if devices == [""]:
+ hosts_ids.append(machine_ip)
+ else:
+ npu_ids.append(machine_ip)
+
+ for npu_id in npu_ids:
+ for host_id in hosts_ids:
+ if npu_id.split(":")[0] in host_id:
+ npu_id2host_id_dict[npu_id] = host_id
+ break
+
+ return npu_id2host_id_dict, hosts_ids
+
+ def get_host_ids_by_npu_ids(self, npu_ids: dict, npu_id2host_id_dict: dict, hosts_ids: list) -> list:
+ host_ids = []
+ if npu_ids:
+ for npu_id in npu_ids:
+ host_id = npu_id2host_id_dict.get(npu_id, "")
+ if host_id:
+ host_ids.append(host_id)
+ else:
+ host_ids = hosts_ids
+
+ return host_ids
+
+ @timer
+ def _execute(self, kpis: List[KPI], features: List[Feature], **kwargs) \
+ -> List[Anomaly]:
+ # save to kafka response
+ anomalies = []
+
+ logger.info('Execute cdt model: %s.', self.__class__.__name__)
+ start, end = dt.last(minutes=30)
+ # 获取machine_ids,
+ machines_to_devices = self.get_machines_to_devices(start, end, kpis)
+ npu_id2host_id, hosts_ids = self.npu_id2host_id(machines_to_devices)
+
+ group_dataloader = GroupDataLoader(self.hccl_domain, self.rank_table, machines_to_devices)
+ group_ranks: list = group_dataloader.get_group_ranks()
+ all_results = []
+ for kpi in kpis:
+ for ranks in group_ranks:
+ machine_ids: dict = group_dataloader.rank_table_loader.get_group_nodes_by_ranks(ranks)
+ host_ids: list = self.get_host_ids_by_npu_ids(machine_ids, npu_id2host_id, hosts_ids)
+ group_result = self.group_detect_single_kpi(kpi, machine_ids, host_ids)
+ all_results.extend(group_result)
+
+ response, all_anomaly_nodes = self.gen_final_alarm(kpis, all_results)
+
+ if response.result_code == ResultCode.anomaly:
+ all_anomaly_nodes = sorted(list(set(all_anomaly_nodes)))
+ anomaly = Anomaly(
+ machine_id=json.dumps(all_anomaly_nodes),
+ metric="slow_node_metric",
+ labels={"instance": "node_ip"},
+ score=1.0,
+ entity_name="sli",
+ details={"detect_method": "slow_node_detection"},
+ description=response)
+ anomalies.append(anomaly)
+
+ return anomalies
+
+ def gen_final_alarm(self, kpis: List[KPI], detect_results: List):
+ response = AIJobDetectResult()
+ all_anomaly_nodes = []
+
+ for index, result in enumerate(detect_results):
+ try:
+ aomaly_devices = result.get("anomaly_devices")
+ all_anomaly_nodes.extend(aomaly_devices)
+ response = self.group_detect_ret_agg(response, result, kpis)
+ except Exception:
+ logger.error(traceback.format_exc())
+ logger.info("accomplishment: %s/%s", index + 1, len(detect_results))
+
+ return response, all_anomaly_nodes
+
+ def group_detect_single_kpi(self, kpi: KPI, machine_ids: dict, host_ids: list) -> list:
+ """Detects kpi based on signal time series anomaly detection model"""
+ # 普罗会一次性抓到所有的数据需要根据machine_id, device_id去对数据作分组
+ # get数据
+ metric_name: str = kpi.metric
+
+ all_machines_ts = []
+ for machine_id in machine_ids:
+ single_machine_ts_list = self.get_kpi_ts_list(metric_name, machine_id, kpi.params)
+ all_machines_ts.extend(single_machine_ts_list)
+ for host_id in host_ids:
+ single_machine_ts_list = self.get_kpi_ts_list(metric_name, host_id, kpi.params)
+ all_machines_ts.extend(single_machine_ts_list)
+
+ anomaly_devices = []
+ anomaly_locations = {}
+ space_anomaly_locations = {}
+
+ detect_data, min_data_len = self.preprocessing_data(metric_name, all_machines_ts)
+ detection_results = {
+ "anomaly_devices": anomaly_devices,
+ "anomaly_locations": anomaly_locations,
+ "detect_result_type": "TIME",
+ "metric_name": metric_name,
+ "group_data": detect_data,
+ }
+ if min_data_len == 0:
+ logger.warning("GROUP data contains EMPTY DATA. GROUP_DATA:%s", pprint.pformat(all_machines_ts))
+ return [detection_results]
+ logger.info("work on %s, %s start.", metric_name, "slow_node_detection")
+
+ # 时间检测
+ # logger.info("work on %s, %s started.", metric_name, "time_node_compare")
+ time_anomaly_locations = self.time_node_compare(kpi, detect_data)
+ logger.info(f"time_node_compare result: {self.output_anomaly_devices(metric_name, time_anomaly_locations)}.")
+ # logger.info("work on %s, %s finished.", metric_name, "time_node_compare")
+
+ # 空间维度对比
+ # 若指标空间维度配置为空,则不进行均质化对比
+ if kpi.params.get("space_detector") is not None:
+ # 四个以上的对象才进行均质化
+ if len(all_machines_ts) >= 4:
+ # 空间维度对比,输出异常节点
+ space_anomaly_locations = self.space_nodes_compare(kpi, detect_data)
+ logger.info(
+ f"space_nodes_compare result: {self.output_anomaly_devices(metric_name, space_anomaly_locations)}.")
+ else:
+ logger.info(f"Skip space nodes compare, due to nodes number{len(all_machines_ts)} is smaller than 4.")
+ else:
+ logger.info(f"Skip space nodes compare.")
+
+ # 时间空间结果融合
+ anomaly_locations, detect_result_type = self.time_space_agg(time_anomaly_locations, space_anomaly_locations,
+ metric_name)
+
+ anomaly_devices = self.output_anomaly_devices(metric_name, anomaly_locations)
+ detection_results["anomaly_devices"] = anomaly_devices
+ detection_results["anomaly_locations"] = anomaly_locations
+ detection_results["detect_result_type"] = detect_result_type
+
+ logger.info(f'''Time and space aggregated result: {anomaly_devices}.''')
+ logger.info("work on %s, %s end.\n", metric_name, "slow_node_detection")
+
+ return [detection_results]
+
+ @staticmethod
+ def output_anomaly_devices(metric: str, anomaly_location: dict):
+ anomaly_devices = []
+ for device_info in anomaly_location.keys():
+ # 异常点数大于0, 则认为该指标出现异常
+ if np.sum(anomaly_location[device_info][metric][1]) > 0:
+ anomaly_devices.append(device_info)
+
+ return anomaly_devices
+
+ @staticmethod
+ def preprocessing_data(metric_name: str, metric_data: list):
+ if len(metric_data) == 0:
+ return {}, 0
+
+ detect_data = {}
+ length = 0
+ for index, metric_ts in enumerate(metric_data):
+ time_stamps = metric_ts.time_stamps
+ length = len(time_stamps)
+ values = metric_ts.values
+ labels = metric_ts.labels
+ if labels.get("id"):
+ device_label = f'''{labels.get("instance")}*{labels.get("id")}'''
+ else:
+ device_label = f'''{labels.get("instance")}*-1'''
+ detect_data[device_label] = pd.DataFrame({"timestamp": time_stamps, metric_name: values})
+
+ return detect_data, length
+
+ def time_node_compare(self, kpi: KPI, detect_data: dict):
+ metric_name = kpi.metric
+ cfg = kpi.params.get("time_detector", {})
+ detector_class = time_node_detectors.get(cfg.get("type"))
+
+ time_node_detector = detector_class(metric_name=metric_name, cfg=cfg)
+ time_node_detector.fit(detect_data)
+ locations = time_node_detector.predict(detect_data)
+ expert_alarm_window_size = kpi.params.get("alarm_filter_window_size")
+
+ for device_info, anomaly_locations in locations.items():
+ filter_labels = self.alarm_filter(anomaly_locations[metric_name][1], expert_alarm_window_size)
+ locations[device_info][metric_name][1][:] = filter_labels
+
+ return locations
+
+ def space_nodes_compare(self, kpi: KPI, detect_data: dict):
+ metric_name = kpi.metric
+ cfg = kpi.params.get("space_detector", {})
+ detector_class = space_node_detectors.get(cfg.get("type"))
+ space_detector = detector_class(cfg)
+ df = pd.DataFrame()
+ column_list = []
+ for device_label, infer_data in detect_data.items():
+ df[device_label] = infer_data[metric_name]
+ column_list.append(device_label)
+
+ detect_node_data = df[column_list].values
+ labels = space_detector.detect(detect_node_data)
+
+ labels = np.swapaxes(labels, 0, 1)
+ space_detect_locations = {}
+
+ i = 0
+ for device_label in column_list:
+ space_detect_locations[device_label] = {}
+ space_detect_locations[device_label][metric_name] = detect_data[device_label]["timestamp"], labels[i]
+ i += 1
+ return space_detect_locations
+
+ def get_kpi_ts_list(self, metric, machine_id: str, kpi_params: dict):
+ look_back = self.config.params.get("look_back", 10)
+ metric_type = kpi_params.get("metric_type", "device")
+ start, end = dt.last(minutes=look_back)
+ # from datetime import timedelta
+ # # 6:40
+ # start = start - timedelta(hours=4.5)
+ # end = end - timedelta(hours=4.5)
+
+ if metric_type == "device":
+ # npu device
+ ts_list = self.data_loader.get_metric(start, end, metric, instance=machine_id)
+ else:
+ # host
+ op = kpi_params.get("method", "avg")
+ ts_list = self.data_loader.get_metric(start, end, metric, operator=op, keys="instance", instance=machine_id)
+
+ return ts_list
+
+ @staticmethod
+ def alarm_filter(labels, alarm_filter_window_size):
+ copy_labels = np.zeros(len(labels))
+ start_index = alarm_filter_window_size
+ alarm_points = set()
+ for i in range(start_index, len(labels) + 1):
+ is_sequential_alarm = (np.sum(labels[i - alarm_filter_window_size:i]) >= alarm_filter_window_size)
+ if not is_sequential_alarm:
+ if np.sum(labels[i - alarm_filter_window_size:i]) > 0:
+ alarm_points.add(i - alarm_filter_window_size)
+ else:
+ copy_labels[i - alarm_filter_window_size:i] = labels[i - alarm_filter_window_size:i]
+ # if alarm_points:
+ # logger.info(f"Alert Remove from point loc", list(alarm_points))
+
+ return copy_labels
+
+ @staticmethod
+ def time_space_agg(time_anomaly_locations, space_anomaly_locations, metric_name):
+ detect_result_type = {}
+
+ for node_id in time_anomaly_locations.keys():
+ time_ret = np.sum(time_anomaly_locations[node_id][metric_name][1])
+ if space_anomaly_locations:
+ space_ret = np.sum(space_anomaly_locations[node_id][metric_name][1])
+ # 如果均质化没有报错则消除告警
+ # 若空间检测和时间检测结果都为空,则返回正常值
+ # 若时间维度和空间维度都出现异常,以空间维度为主返回结果
+ if space_ret == 0 or (space_ret > 0 and time_ret >= 0):
+ time_anomaly_locations[node_id][metric_name] = space_anomaly_locations[node_id][metric_name]
+ detect_result_type.setdefault(node_id, {}).setdefault(metric_name, "SPACE")
+ else:
+ detect_result_type.setdefault(node_id, {}).setdefault(metric_name, "TIME")
+ else:
+ detect_result_type.setdefault(node_id, {}).setdefault(metric_name, "TIME")
+
+ return time_anomaly_locations, detect_result_type
+
+ @staticmethod
+ def _get_kpi_params(kpis: List[KPI], metric_name):
+ for kpi in kpis:
+ if kpi.metric == metric_name:
+ return kpi.params
+
+ return {}
+
+ def group_detect_ret_agg(self, response, detect_result, kpis: List[KPI]):
+ anomaly_device_labels = detect_result.get("anomaly_devices")
+ anomaly_locations = detect_result.get("anomaly_locations")
+ metric_name = detect_result.get("metric_name")
+ detect_result_type = detect_result.get("detect_result_type")
+ group_data = detect_result.get("group_data")
+ if len(anomaly_device_labels) == 0:
+ return response
+ else:
+ response.result_code = ResultCode.anomaly
+ kpi_params = self._get_kpi_params(kpis, metric_name)
+ response(kpi_params.get('type', "compute"))
+
+ keep_devices = []
+ omitted_devices = []
+ for device_label in anomaly_device_labels:
+ method_type = detect_result_type.get(device_label, {}).get(metric_name, "TIME")
+ if method_type == "SPACE":
+ normal_devices = sorted(set(group_data.keys()) - set(anomaly_device_labels))
+ keep_devices = normal_devices[:self.max_num_normal_results]
+ omitted_devices = normal_devices[self.max_num_normal_results:]
+ abnormal_node_data = NodeData(metric_name, device_label, method_type, keep_devices, omitted_devices)
+ time_stamp_data, values = anomaly_locations[device_label][metric_name]
+ label_dict = dict(zip(time_stamp_data.tolist(), values.tolist()))
+
+ # see user requirements for this real kpi value
+ if self.record_kpi_value:
+ # record anomaly kpi value
+ g_ts, g_value = group_data[device_label].values[:, 0], group_data[device_label].values[:, 1]
+ kpi_data = []
+ for key, value in sorted(zip(g_ts.tolist(), g_value.tolist()), key=lambda x: x[0]):
+ kpi_data.append({str(key): str(value), "abnormal": label_dict.get(key, 0)})
+
+ abnormal_node_data.kpi_data = kpi_data
+ response.abnormal_detail.append(abnormal_node_data)
+
+ if keep_devices:
+ for device_label in keep_devices:
+ normal_node_data = NodeData(metric_name, device_label, "SPACE")
+ # see user requirements for this real kpi value
+ if self.record_kpi_value:
+ # record normal kpi data for space compare
+ g_ts, g_value = group_data[device_label].values[:, 0], group_data[device_label].values[:, 1]
+ kpi_data = [{str(key): str(value)} for key, value in zip(g_ts.tolist(), g_value.tolist())]
+ normal_node_data.kpi_data = kpi_data
+ response.normal_detail.append(normal_node_data)
+ return response
diff --git a/config/module/slow_node_detection.job.json b/config/module/slow_node_detection.job.json
new file mode 100644
index 0000000..91ff621
--- /dev/null
+++ b/config/module/slow_node_detection.job.json
@@ -0,0 +1,352 @@
+{
+ "name": "SlowNodeDetector",
+ "enable": true,
+ "job_type": "anomaly_detection",
+ "keywords": [
+ "app"
+ ],
+ "root_cause_num": 20,
+ "detector": "slow-node-detection",
+ "template": "slow_node",
+ "model_config": {
+ "name": "disruption_model",
+ "params": {
+ "record_kpi": false,
+ "max_num_normal_results": 16,
+ "look_back": 20,
+ "obs_size": 5,
+ "outlier_ratio_th": 0.6,
+ "hccl_domain_json": "./hccl_domain.json",
+ "rank_table_json": "./hccl_domain.json"
+ }
+ },
+ "kpis": [
+ {
+ "metric": "gala_gopher_cpu_total_used_per",
+ "entity_name": "sli",
+ "atrend": "rise",
+ "enable": true,
+ "params": {
+ "metric_type": "host",
+ "method": "avg",
+ "priority": 30,
+ "alarm_filter_window_size": 5,
+ "space_detector": null,
+ "time_detector": {
+ "preprocess_eps": 0.1,
+ "preprocess_min_samples": 10,
+ "type": "SlidingWindowKSigmaDetector",
+ "n_sigma_method": {
+ "type": "SlidingWindowNSigma",
+ "training_window_size": 40,
+ "min_update_window_size": 10,
+ "min_std_val": 0.0001,
+ "bias": 0.01,
+ "abs_bias": 0,
+ "nsigma_coefficient": 4,
+ "detect_type": "upper_bound",
+ "min_expert_lower_bound": null,
+ "max_expert_lower_bound": null,
+ "min_expert_upper_bound": 70,
+ "max_expert_upper_bound": 80
+ }
+ },
+ "type": "compute"
+ }
+ },
+ {
+ "metric": "gala_gopher_mem_util",
+ "entity_name": "sli",
+ "atrend": "rise",
+ "enable": true,
+ "params": {
+ "metric_type": "host",
+ "method": "sum",
+ "priority": 20,
+ "alarm_filter_window_size": 5,
+ "space_detector": {
+ "first_gap_rate": 0.3,
+ "second_gap_rate": 0.2,
+ "base_threshold": 150,
+ "discrete_rate": 1.5,
+ "nsigma_coefficient": 2,
+ "discrete_point_suppression_ratio": 0.03,
+ "non_major_anomaly_suppression": 0.1,
+ "type": "OuterDataDetector"
+ },
+ "time_detector": {
+ "preprocess_eps": 0.1,
+ "preprocess_min_samples": 10,
+ "type": "SlidingWindowKSigmaDetector",
+ "n_sigma_method": {
+ "type": "SlidingWindowNSigma",
+ "training_window_size": 40,
+ "min_update_window_size": 10,
+ "min_std_val": 0.0001,
+ "bias": 0.1,
+ "abs_bias": 5,
+ "nsigma_coefficient": 4,
+ "detect_type": "upper_bound",
+ "min_expert_lower_bound": null,
+ "max_expert_lower_bound": null,
+ "min_expert_upper_bound": 50,
+ "max_expert_upper_bound": null
+ }
+ },
+ "type": "compute"
+ }
+ },
+ {
+ "metric": "gala_gopher_disk_wspeed_kB",
+ "entity_name": "sli",
+ "atrend": "rise",
+ "enable": true,
+ "params": {
+ "metric_type": "host",
+ "method": "sum",
+ "priority": 5,
+ "alarm_filter_window_size": 30,
+ "space_detector": null,
+ "time_detector": {
+ "preprocess_eps": 0.1,
+ "preprocess_min_samples": 10,
+ "type": "SlidingWindowKSigmaDetector",
+ "n_sigma_method": {
+ "type": "SlidingWindowNSigma",
+ "training_window_size": 60,
+ "min_update_window_size": 10,
+ "min_std_val": 0.0001,
+ "bias": 0.3,
+ "abs_bias": 0,
+ "nsigma_coefficient": 3,
+ "detect_type": "lower_bound",
+ "min_expert_lower_bound": null,
+ "max_expert_lower_bound": null,
+ "min_expert_upper_bound": null,
+ "max_expert_upper_bound": null
+ }
+ },
+ "type": "storage"
+ }
+ },
+ {
+ "metric": "gala_gopher_nic_tx_dropped",
+ "entity_name": "sli",
+ "atrend": "rise",
+ "enable": true,
+ "params": {
+ "metric_type": "host",
+ "method": "sum",
+ "priority": 5,
+ "alarm_filter_window_size": 5,
+ "space_detector": null,
+ "time_detector": {
+ "preprocess_eps": 0.1,
+ "preprocess_min_samples": 10,
+ "type": "SlidingWindowKSigmaDetector",
+ "n_sigma_method": {
+ "type": "SlidingWindowNSigma",
+ "training_window_size": 40,
+ "min_update_window_size": 10,
+ "min_std_val": 0.0001,
+ "bias": 0.05,
+ "abs_bias": 0,
+ "nsigma_coefficient": 4,
+ "detect_type": "upper_bound",
+ "min_expert_lower_bound": null,
+ "max_expert_lower_bound": null,
+ "min_expert_upper_bound": 10,
+ "max_expert_upper_bound": null
+ }
+ },
+ "type": "network"
+ }
+ },
+ {
+ "metric": "gala_gopher_nic_tx_errs",
+ "entity_name": "sli",
+ "atrend": "rise",
+ "enable": true,
+ "params": {
+ "metric_type": "host",
+ "method": "sum",
+ "priority": 5,
+ "alarm_filter_window_size": 5,
+ "space_detector": null,
+ "time_detector": {
+ "preprocess_eps": 0.1,
+ "preprocess_min_samples": 10,
+ "type": "SlidingWindowKSigmaDetector",
+ "n_sigma_method": {
+ "type": "SlidingWindowNSigma",
+ "training_window_size": 40,
+ "min_update_window_size": 10,
+ "min_std_val": 0.0001,
+ "bias": 0.05,
+ "abs_bias": 0,
+ "nsigma_coefficient": 4,
+ "detect_type": "upper_bound",
+ "min_expert_lower_bound": null,
+ "max_expert_lower_bound": null,
+ "min_expert_upper_bound": 10,
+ "max_expert_upper_bound": null
+ }
+ },
+ "type": "network"
+ }
+ },
+ {
+ "metric": "npu_chip_info_temperature",
+ "entity_name": "sli",
+ "atrend": "rise",
+ "enable": true,
+ "params": {
+ "metric_type": "device",
+ "method": "max",
+ "priority": 25,
+ "alarm_filter_window_size": 12,
+ "space_detector": null,
+ "time_detector": {
+ "preprocess_eps": 0.1,
+ "preprocess_min_samples": 10,
+ "type": "SlidingWindowKSigmaDetector",
+ "n_sigma_method": {
+ "type": "SlidingWindowNSigma",
+ "training_window_size": 40,
+ "min_update_window_size": 10,
+ "min_std_val": 0.0001,
+ "bias": 0.01,
+ "abs_bias": 0,
+ "nsigma_coefficient": 4,
+ "detect_type": "upper_bound",
+ "min_expert_lower_bound": null,
+ "max_expert_lower_bound": null,
+ "min_expert_upper_bound": 70,
+ "max_expert_upper_bound": 100
+ }
+ },
+ "type": "compute"
+ }
+ },
+ {
+ "metric": "npu_chip_info_hbm_used_memory",
+ "entity_name": "sli",
+ "atrend": "rise",
+ "enable": true,
+ "params": {
+ "metric_type": "device",
+ "method": "max",
+ "priority": 30,
+ "alarm_filter_window_size": 5,
+ "space_detector": {
+ "dist_metric": "euclidean",
+ "eps": 0.4,
+ "cv_threshold": 0.03,
+ "min_samples": 2,
+ "window_size": 100,
+ "scaling": false,
+ "type": "SlidingWindowDBSCAN"
+ },
+ "time_detector": {
+ "preprocess_eps": 0.1,
+ "preprocess_min_samples": 10,
+ "type": "SlidingWindowKSigmaDetector",
+ "n_sigma_method": {
+ "type": "SlidingWindowNSigma",
+ "training_window_size": 40,
+ "min_update_window_size": 10,
+ "min_std_val": 0.0001,
+ "bias": 0.02,
+ "abs_bias": 5,
+ "nsigma_coefficient": 4,
+ "detect_type": "upper_bound",
+ "min_expert_lower_bound": null,
+ "max_expert_lower_bound": null,
+ "min_expert_upper_bound": null,
+ "max_expert_upper_bound": null
+ }
+ },
+ "type": "compute"
+ }
+ },
+ {
+ "metric": "npu_chip_info_aicore_current_freq",
+ "entity_name": "sli",
+ "atrend": "rise",
+ "enable": true,
+ "params": {
+ "metric_type": "device",
+ "method": "max",
+ "priority": 30,
+ "alarm_filter_window_size": 5,
+ "space_detector": {
+ "dist_metric": "euclidean",
+ "eps": 0.4,
+ "cv_threshold": 0.03,
+ "min_samples": 2,
+ "window_size": 100,
+ "scaling": true,
+ "type": "SlidingWindowDBSCAN"
+ },
+ "time_detector": {
+ "preprocess_eps": 0.1,
+ "preprocess_min_samples": 10,
+ "type": "SlidingWindowKSigmaDetector",
+ "n_sigma_method": {
+ "type": "SlidingWindowNSigma",
+ "training_window_size": 40,
+ "min_update_window_size": 10,
+ "min_std_val": 0.0001,
+ "bias": 0.05,
+ "abs_bias": 0,
+ "nsigma_coefficient": 4,
+ "detect_type": "lower_bound",
+ "min_expert_lower_bound": null,
+ "max_expert_lower_bound": null,
+ "min_expert_upper_bound": 10,
+ "max_expert_upper_bound": null
+ }
+ },
+ "type": "compute"
+ }
+ },
+ {
+ "metric": "npu_chip_roce_tx_err_pkt_num",
+ "entity_name": "sli",
+ "atrend": "rise",
+ "enable": true,
+ "params": {
+ "metric_type": "device",
+ "method": "max",
+ "priority": 30,
+ "alarm_filter_window_size": 5,
+ "space_detector": null,
+ "time_detector": {
+ "preprocess_eps": 0.1,
+ "preprocess_min_samples": 10,
+ "type": "SlidingWindowKSigmaDetector",
+ "n_sigma_method": {
+ "type": "SlidingWindowNSigma",
+ "training_window_size": 40,
+ "min_update_window_size": 10,
+ "min_std_val": 0.0001,
+ "bias": 0.05,
+ "abs_bias": 0,
+ "nsigma_coefficient": 4,
+ "detect_type": "upper_bound",
+ "min_expert_lower_bound": null,
+ "max_expert_lower_bound": null,
+ "min_expert_upper_bound": 10,
+ "max_expert_upper_bound": null
+ }
+ },
+ "type": "network"
+ }
+ }
+ ],
+ "features": [
+ {
+ "metric": "gala_gopher_container_cpu_usage_seconds_total"
+ }
+ ]
+}
\ No newline at end of file
--
2.33.0