!41 同步openEuler-22.03-LTS-SP4
From: @webankto Reviewed-by: @wangfenglai Signed-off-by: @wangfenglai
This commit is contained in:
commit
0bffe1d038
777
0001-add-new-feature-slow-node-detection.patch
Normal file
777
0001-add-new-feature-slow-node-detection.patch
Normal file
@ -0,0 +1,777 @@
|
||||
From 2e30b68154f5d0b6a68eab1bf8408363bbf28a76 Mon Sep 17 00:00:00 2001
|
||||
From: huangbin <huangbin58@huawei.com>
|
||||
Date: Tue, 5 Nov 2024 15:37:00 +0800
|
||||
Subject: [PATCH] add new feature slow node detection
|
||||
|
||||
---
|
||||
anteater/model/detector/slow_node_detector.py | 397 ++++++++++++++++++
|
||||
config/module/slow_node_detection.job.json | 352 ++++++++++++++++
|
||||
2 files changed, 749 insertions(+)
|
||||
create mode 100644 anteater/model/detector/slow_node_detector.py
|
||||
create mode 100644 config/module/slow_node_detection.job.json
|
||||
|
||||
diff --git a/anteater/model/detector/slow_node_detector.py b/anteater/model/detector/slow_node_detector.py
|
||||
new file mode 100644
|
||||
index 0000000..15a6cee
|
||||
--- /dev/null
|
||||
+++ b/anteater/model/detector/slow_node_detector.py
|
||||
@@ -0,0 +1,397 @@
|
||||
+#!/usr/bin/python3
|
||||
+# ******************************************************************************
|
||||
+# Copyright (c) 2023 Huawei Technologies Co., Ltd.
|
||||
+# gala-anteater is licensed under Mulan PSL v2.
|
||||
+# You can use this software according to the terms and conditions of the Mulan PSL v2.
|
||||
+# You may obtain a copy of Mulan PSL v2 at:
|
||||
+# http://license.coscl.org.cn/MulanPSL2
|
||||
+# THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
|
||||
+# EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
|
||||
+# MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
|
||||
+# See the Mulan PSL v2 for more details.
|
||||
+# ******************************************************************************/
|
||||
+import time
|
||||
+import json
|
||||
+import os.path
|
||||
+import pprint
|
||||
+import traceback
|
||||
+from typing import List
|
||||
+
|
||||
+import numpy as np
|
||||
+import pandas as pd
|
||||
+
|
||||
+from anteater.core.slow_node_response import AIJobDetectResult, ResultCode, NodeData
|
||||
+from anteater.core.anomaly import Anomaly, RootCause
|
||||
+from anteater.core.kpi import KPI, ModelConfig, Feature
|
||||
+from anteater.utils.datetime import DateTimeManager as dt
|
||||
+from anteater.utils.timer import timer
|
||||
+from anteater.utils.log import logger
|
||||
+from anteater.source.metric_loader import MetricLoader
|
||||
+from anteater.model.detector.base import Detector
|
||||
+from anteater.model.process.rank_table_loader import GroupDataLoader
|
||||
+from anteater.model.algorithms.slow_node_algs import time_node_detectors, space_node_detectors
|
||||
+
|
||||
+
|
||||
+class SlowNodeDetector(Detector):
|
||||
+ def __init__(self, data_loader: MetricLoader, config: ModelConfig, **kwargs):
|
||||
+ """The detector base class initializer"""
|
||||
+ super().__init__(data_loader, **kwargs)
|
||||
+ self.config = config
|
||||
+ self.max_num_normal_results = self.config.params.get("max_num_normal_results", 10)
|
||||
+ self.record_kpi_value = self.config.params.get("record_kpi", False)
|
||||
+ self.hccl_domain, self.rank_table = self._init_hccl_and_rank_table()
|
||||
+
|
||||
+ def _init_hccl_and_rank_table(self):
|
||||
+ params = self.config.params
|
||||
+ hccl_domain_path = params.get("hccl_domain_json")
|
||||
+ rank_table_path = params.get("rank_table_json")
|
||||
+
|
||||
+ hccl_domain = {}
|
||||
+ rank_table = {}
|
||||
+
|
||||
+ if os.path.exists(hccl_domain_path):
|
||||
+ try:
|
||||
+ with open(rank_table_path, 'r', encoding='utf-8') as f_out:
|
||||
+ hccl_domain = json.load(f_out)
|
||||
+ except Exception:
|
||||
+ logger.error(f"Read hccl domain info fail!")
|
||||
+ if os.path.exists(rank_table_path):
|
||||
+ try:
|
||||
+ with open(rank_table_path, 'r', encoding='utf-8') as f_out:
|
||||
+ rank_table = json.load(f_out)
|
||||
+ except Exception:
|
||||
+ logger.error(f"Read rank table info fail!")
|
||||
+
|
||||
+ return hccl_domain, rank_table
|
||||
+
|
||||
+ @staticmethod
|
||||
+ def npu_id2host_id(machines2devices: dict):
|
||||
+ npu_id2host_id_dict = {}
|
||||
+ npu_ids = []
|
||||
+ hosts_ids = []
|
||||
+ for machine_ip, devices in machines2devices.items():
|
||||
+ if devices == [""]:
|
||||
+ hosts_ids.append(machine_ip)
|
||||
+ else:
|
||||
+ npu_ids.append(machine_ip)
|
||||
+
|
||||
+ for npu_id in npu_ids:
|
||||
+ for host_id in hosts_ids:
|
||||
+ if npu_id.split(":")[0] in host_id:
|
||||
+ npu_id2host_id_dict[npu_id] = host_id
|
||||
+ break
|
||||
+
|
||||
+ return npu_id2host_id_dict, hosts_ids
|
||||
+
|
||||
+ def get_host_ids_by_npu_ids(self, npu_ids: dict, npu_id2host_id_dict: dict, hosts_ids: list) -> list:
|
||||
+ host_ids = []
|
||||
+ if npu_ids:
|
||||
+ for npu_id in npu_ids:
|
||||
+ host_id = npu_id2host_id_dict.get(npu_id, "")
|
||||
+ if host_id:
|
||||
+ host_ids.append(host_id)
|
||||
+ else:
|
||||
+ host_ids = hosts_ids
|
||||
+
|
||||
+ return host_ids
|
||||
+
|
||||
+ @timer
|
||||
+ def _execute(self, kpis: List[KPI], features: List[Feature], **kwargs) \
|
||||
+ -> List[Anomaly]:
|
||||
+ # save to kafka response
|
||||
+ anomalies = []
|
||||
+
|
||||
+ logger.info('Execute cdt model: %s.', self.__class__.__name__)
|
||||
+ start, end = dt.last(minutes=30)
|
||||
+ # 获取machine_ids,
|
||||
+ machines_to_devices = self.get_machines_to_devices(start, end, kpis)
|
||||
+ npu_id2host_id, hosts_ids = self.npu_id2host_id(machines_to_devices)
|
||||
+
|
||||
+ group_dataloader = GroupDataLoader(self.hccl_domain, self.rank_table, machines_to_devices)
|
||||
+ group_ranks: list = group_dataloader.get_group_ranks()
|
||||
+ all_results = []
|
||||
+ for kpi in kpis:
|
||||
+ for ranks in group_ranks:
|
||||
+ machine_ids: dict = group_dataloader.rank_table_loader.get_group_nodes_by_ranks(ranks)
|
||||
+ host_ids: list = self.get_host_ids_by_npu_ids(machine_ids, npu_id2host_id, hosts_ids)
|
||||
+ group_result = self.group_detect_single_kpi(kpi, machine_ids, host_ids)
|
||||
+ all_results.extend(group_result)
|
||||
+
|
||||
+ response, all_anomaly_nodes = self.gen_final_alarm(kpis, all_results)
|
||||
+
|
||||
+ if response.result_code == ResultCode.anomaly:
|
||||
+ all_anomaly_nodes = sorted(list(set(all_anomaly_nodes)))
|
||||
+ anomaly = Anomaly(
|
||||
+ machine_id=json.dumps(all_anomaly_nodes),
|
||||
+ metric="slow_node_metric",
|
||||
+ labels={"instance": "node_ip"},
|
||||
+ score=1.0,
|
||||
+ entity_name="sli",
|
||||
+ details={"detect_method": "slow_node_detection"},
|
||||
+ description=response)
|
||||
+ anomalies.append(anomaly)
|
||||
+
|
||||
+ return anomalies
|
||||
+
|
||||
+ def gen_final_alarm(self, kpis: List[KPI], detect_results: List):
|
||||
+ response = AIJobDetectResult()
|
||||
+ all_anomaly_nodes = []
|
||||
+
|
||||
+ for index, result in enumerate(detect_results):
|
||||
+ try:
|
||||
+ aomaly_devices = result.get("anomaly_devices")
|
||||
+ all_anomaly_nodes.extend(aomaly_devices)
|
||||
+ response = self.group_detect_ret_agg(response, result, kpis)
|
||||
+ except Exception:
|
||||
+ logger.error(traceback.format_exc())
|
||||
+ logger.info("accomplishment: %s/%s", index + 1, len(detect_results))
|
||||
+
|
||||
+ return response, all_anomaly_nodes
|
||||
+
|
||||
+ def group_detect_single_kpi(self, kpi: KPI, machine_ids: dict, host_ids: list) -> list:
|
||||
+ """Detects kpi based on signal time series anomaly detection model"""
|
||||
+ # 普罗会一次性抓到所有的数据,需要根据machine_id, device_id去对数据作分组
|
||||
+ # get数据
|
||||
+ metric_name: str = kpi.metric
|
||||
+
|
||||
+ all_machines_ts = []
|
||||
+ for machine_id in machine_ids:
|
||||
+ single_machine_ts_list = self.get_kpi_ts_list(metric_name, machine_id, kpi.params)
|
||||
+ all_machines_ts.extend(single_machine_ts_list)
|
||||
+ for host_id in host_ids:
|
||||
+ single_machine_ts_list = self.get_kpi_ts_list(metric_name, host_id, kpi.params)
|
||||
+ all_machines_ts.extend(single_machine_ts_list)
|
||||
+
|
||||
+ anomaly_devices = []
|
||||
+ anomaly_locations = {}
|
||||
+ space_anomaly_locations = {}
|
||||
+
|
||||
+ detect_data, min_data_len = self.preprocessing_data(metric_name, all_machines_ts)
|
||||
+ detection_results = {
|
||||
+ "anomaly_devices": anomaly_devices,
|
||||
+ "anomaly_locations": anomaly_locations,
|
||||
+ "detect_result_type": "TIME",
|
||||
+ "metric_name": metric_name,
|
||||
+ "group_data": detect_data,
|
||||
+ }
|
||||
+ if min_data_len == 0:
|
||||
+ logger.warning("GROUP data contains EMPTY DATA. GROUP_DATA:%s", pprint.pformat(all_machines_ts))
|
||||
+ return [detection_results]
|
||||
+ logger.info("work on %s, %s start.", metric_name, "slow_node_detection")
|
||||
+
|
||||
+ # 时间检测
|
||||
+ # logger.info("work on %s, %s started.", metric_name, "time_node_compare")
|
||||
+ time_anomaly_locations = self.time_node_compare(kpi, detect_data)
|
||||
+ logger.info(f"time_node_compare result: {self.output_anomaly_devices(metric_name, time_anomaly_locations)}.")
|
||||
+ # logger.info("work on %s, %s finished.", metric_name, "time_node_compare")
|
||||
+
|
||||
+ # 空间维度对比
|
||||
+ # 若指标空间维度配置为空,则不进行均质化对比
|
||||
+ if kpi.params.get("space_detector") is not None:
|
||||
+ # 四个以上的对象才进行均质化
|
||||
+ if len(all_machines_ts) >= 4:
|
||||
+ # 空间维度对比,输出异常节点
|
||||
+ space_anomaly_locations = self.space_nodes_compare(kpi, detect_data)
|
||||
+ logger.info(
|
||||
+ f"space_nodes_compare result: {self.output_anomaly_devices(metric_name, space_anomaly_locations)}.")
|
||||
+ else:
|
||||
+ logger.info(f"Skip space nodes compare, due to nodes number{len(all_machines_ts)} is smaller than 4.")
|
||||
+ else:
|
||||
+ logger.info(f"Skip space nodes compare.")
|
||||
+
|
||||
+ # 时间空间结果融合
|
||||
+ anomaly_locations, detect_result_type = self.time_space_agg(time_anomaly_locations, space_anomaly_locations,
|
||||
+ metric_name)
|
||||
+
|
||||
+ anomaly_devices = self.output_anomaly_devices(metric_name, anomaly_locations)
|
||||
+ detection_results["anomaly_devices"] = anomaly_devices
|
||||
+ detection_results["anomaly_locations"] = anomaly_locations
|
||||
+ detection_results["detect_result_type"] = detect_result_type
|
||||
+
|
||||
+ logger.info(f'''Time and space aggregated result: {anomaly_devices}.''')
|
||||
+ logger.info("work on %s, %s end.\n", metric_name, "slow_node_detection")
|
||||
+
|
||||
+ return [detection_results]
|
||||
+
|
||||
+ @staticmethod
|
||||
+ def output_anomaly_devices(metric: str, anomaly_location: dict):
|
||||
+ anomaly_devices = []
|
||||
+ for device_info in anomaly_location.keys():
|
||||
+ # 异常点数大于0, 则认为该指标出现异常
|
||||
+ if np.sum(anomaly_location[device_info][metric][1]) > 0:
|
||||
+ anomaly_devices.append(device_info)
|
||||
+
|
||||
+ return anomaly_devices
|
||||
+
|
||||
+ @staticmethod
|
||||
+ def preprocessing_data(metric_name: str, metric_data: list):
|
||||
+ if len(metric_data) == 0:
|
||||
+ return {}, 0
|
||||
+
|
||||
+ detect_data = {}
|
||||
+ length = 0
|
||||
+ for index, metric_ts in enumerate(metric_data):
|
||||
+ time_stamps = metric_ts.time_stamps
|
||||
+ length = len(time_stamps)
|
||||
+ values = metric_ts.values
|
||||
+ labels = metric_ts.labels
|
||||
+ if labels.get("id"):
|
||||
+ device_label = f'''{labels.get("instance")}*{labels.get("id")}'''
|
||||
+ else:
|
||||
+ device_label = f'''{labels.get("instance")}*-1'''
|
||||
+ detect_data[device_label] = pd.DataFrame({"timestamp": time_stamps, metric_name: values})
|
||||
+
|
||||
+ return detect_data, length
|
||||
+
|
||||
+ def time_node_compare(self, kpi: KPI, detect_data: dict):
|
||||
+ metric_name = kpi.metric
|
||||
+ cfg = kpi.params.get("time_detector", {})
|
||||
+ detector_class = time_node_detectors.get(cfg.get("type"))
|
||||
+
|
||||
+ time_node_detector = detector_class(metric_name=metric_name, cfg=cfg)
|
||||
+ time_node_detector.fit(detect_data)
|
||||
+ locations = time_node_detector.predict(detect_data)
|
||||
+ expert_alarm_window_size = kpi.params.get("alarm_filter_window_size")
|
||||
+
|
||||
+ for device_info, anomaly_locations in locations.items():
|
||||
+ filter_labels = self.alarm_filter(anomaly_locations[metric_name][1], expert_alarm_window_size)
|
||||
+ locations[device_info][metric_name][1][:] = filter_labels
|
||||
+
|
||||
+ return locations
|
||||
+
|
||||
+ def space_nodes_compare(self, kpi: KPI, detect_data: dict):
|
||||
+ metric_name = kpi.metric
|
||||
+ cfg = kpi.params.get("space_detector", {})
|
||||
+ detector_class = space_node_detectors.get(cfg.get("type"))
|
||||
+ space_detector = detector_class(cfg)
|
||||
+ df = pd.DataFrame()
|
||||
+ column_list = []
|
||||
+ for device_label, infer_data in detect_data.items():
|
||||
+ df[device_label] = infer_data[metric_name]
|
||||
+ column_list.append(device_label)
|
||||
+
|
||||
+ detect_node_data = df[column_list].values
|
||||
+ labels = space_detector.detect(detect_node_data)
|
||||
+
|
||||
+ labels = np.swapaxes(labels, 0, 1)
|
||||
+ space_detect_locations = {}
|
||||
+
|
||||
+ i = 0
|
||||
+ for device_label in column_list:
|
||||
+ space_detect_locations[device_label] = {}
|
||||
+ space_detect_locations[device_label][metric_name] = detect_data[device_label]["timestamp"], labels[i]
|
||||
+ i += 1
|
||||
+ return space_detect_locations
|
||||
+
|
||||
+ def get_kpi_ts_list(self, metric, machine_id: str, kpi_params: dict):
|
||||
+ look_back = self.config.params.get("look_back", 10)
|
||||
+ metric_type = kpi_params.get("metric_type", "device")
|
||||
+ start, end = dt.last(minutes=look_back)
|
||||
+ # from datetime import timedelta
|
||||
+ # # 6:40
|
||||
+ # start = start - timedelta(hours=4.5)
|
||||
+ # end = end - timedelta(hours=4.5)
|
||||
+
|
||||
+ if metric_type == "device":
|
||||
+ # npu device
|
||||
+ ts_list = self.data_loader.get_metric(start, end, metric, instance=machine_id)
|
||||
+ else:
|
||||
+ # host
|
||||
+ op = kpi_params.get("method", "avg")
|
||||
+ ts_list = self.data_loader.get_metric(start, end, metric, operator=op, keys="instance", instance=machine_id)
|
||||
+
|
||||
+ return ts_list
|
||||
+
|
||||
+ @staticmethod
|
||||
+ def alarm_filter(labels, alarm_filter_window_size):
|
||||
+ copy_labels = np.zeros(len(labels))
|
||||
+ start_index = alarm_filter_window_size
|
||||
+ alarm_points = set()
|
||||
+ for i in range(start_index, len(labels) + 1):
|
||||
+ is_sequential_alarm = (np.sum(labels[i - alarm_filter_window_size:i]) >= alarm_filter_window_size)
|
||||
+ if not is_sequential_alarm:
|
||||
+ if np.sum(labels[i - alarm_filter_window_size:i]) > 0:
|
||||
+ alarm_points.add(i - alarm_filter_window_size)
|
||||
+ else:
|
||||
+ copy_labels[i - alarm_filter_window_size:i] = labels[i - alarm_filter_window_size:i]
|
||||
+ # if alarm_points:
|
||||
+ # logger.info(f"Alert Remove from point loc", list(alarm_points))
|
||||
+
|
||||
+ return copy_labels
|
||||
+
|
||||
+ @staticmethod
|
||||
+ def time_space_agg(time_anomaly_locations, space_anomaly_locations, metric_name):
|
||||
+ detect_result_type = {}
|
||||
+
|
||||
+ for node_id in time_anomaly_locations.keys():
|
||||
+ time_ret = np.sum(time_anomaly_locations[node_id][metric_name][1])
|
||||
+ if space_anomaly_locations:
|
||||
+ space_ret = np.sum(space_anomaly_locations[node_id][metric_name][1])
|
||||
+ # 如果均质化没有报错则消除告警
|
||||
+ # 若空间检测和时间检测结果都为空,则返回正常值
|
||||
+ # 若时间维度和空间维度都出现异常,以空间维度为主返回结果
|
||||
+ if space_ret == 0 or (space_ret > 0 and time_ret >= 0):
|
||||
+ time_anomaly_locations[node_id][metric_name] = space_anomaly_locations[node_id][metric_name]
|
||||
+ detect_result_type.setdefault(node_id, {}).setdefault(metric_name, "SPACE")
|
||||
+ else:
|
||||
+ detect_result_type.setdefault(node_id, {}).setdefault(metric_name, "TIME")
|
||||
+ else:
|
||||
+ detect_result_type.setdefault(node_id, {}).setdefault(metric_name, "TIME")
|
||||
+
|
||||
+ return time_anomaly_locations, detect_result_type
|
||||
+
|
||||
+ @staticmethod
|
||||
+ def _get_kpi_params(kpis: List[KPI], metric_name):
|
||||
+ for kpi in kpis:
|
||||
+ if kpi.metric == metric_name:
|
||||
+ return kpi.params
|
||||
+
|
||||
+ return {}
|
||||
+
|
||||
+ def group_detect_ret_agg(self, response, detect_result, kpis: List[KPI]):
|
||||
+ anomaly_device_labels = detect_result.get("anomaly_devices")
|
||||
+ anomaly_locations = detect_result.get("anomaly_locations")
|
||||
+ metric_name = detect_result.get("metric_name")
|
||||
+ detect_result_type = detect_result.get("detect_result_type")
|
||||
+ group_data = detect_result.get("group_data")
|
||||
+ if len(anomaly_device_labels) == 0:
|
||||
+ return response
|
||||
+ else:
|
||||
+ response.result_code = ResultCode.anomaly
|
||||
+ kpi_params = self._get_kpi_params(kpis, metric_name)
|
||||
+ response(kpi_params.get('type', "compute"))
|
||||
+
|
||||
+ keep_devices = []
|
||||
+ omitted_devices = []
|
||||
+ for device_label in anomaly_device_labels:
|
||||
+ method_type = detect_result_type.get(device_label, {}).get(metric_name, "TIME")
|
||||
+ if method_type == "SPACE":
|
||||
+ normal_devices = sorted(set(group_data.keys()) - set(anomaly_device_labels))
|
||||
+ keep_devices = normal_devices[:self.max_num_normal_results]
|
||||
+ omitted_devices = normal_devices[self.max_num_normal_results:]
|
||||
+ abnormal_node_data = NodeData(metric_name, device_label, method_type, keep_devices, omitted_devices)
|
||||
+ time_stamp_data, values = anomaly_locations[device_label][metric_name]
|
||||
+ label_dict = dict(zip(time_stamp_data.tolist(), values.tolist()))
|
||||
+
|
||||
+ # see user requirements for this real kpi value
|
||||
+ if self.record_kpi_value:
|
||||
+ # record anomaly kpi value
|
||||
+ g_ts, g_value = group_data[device_label].values[:, 0], group_data[device_label].values[:, 1]
|
||||
+ kpi_data = []
|
||||
+ for key, value in sorted(zip(g_ts.tolist(), g_value.tolist()), key=lambda x: x[0]):
|
||||
+ kpi_data.append({str(key): str(value), "abnormal": label_dict.get(key, 0)})
|
||||
+
|
||||
+ abnormal_node_data.kpi_data = kpi_data
|
||||
+ response.abnormal_detail.append(abnormal_node_data)
|
||||
+
|
||||
+ if keep_devices:
|
||||
+ for device_label in keep_devices:
|
||||
+ normal_node_data = NodeData(metric_name, device_label, "SPACE")
|
||||
+ # see user requirements for this real kpi value
|
||||
+ if self.record_kpi_value:
|
||||
+ # record normal kpi data for space compare
|
||||
+ g_ts, g_value = group_data[device_label].values[:, 0], group_data[device_label].values[:, 1]
|
||||
+ kpi_data = [{str(key): str(value)} for key, value in zip(g_ts.tolist(), g_value.tolist())]
|
||||
+ normal_node_data.kpi_data = kpi_data
|
||||
+ response.normal_detail.append(normal_node_data)
|
||||
+ return response
|
||||
diff --git a/config/module/slow_node_detection.job.json b/config/module/slow_node_detection.job.json
|
||||
new file mode 100644
|
||||
index 0000000..91ff621
|
||||
--- /dev/null
|
||||
+++ b/config/module/slow_node_detection.job.json
|
||||
@@ -0,0 +1,352 @@
|
||||
+{
|
||||
+ "name": "SlowNodeDetector",
|
||||
+ "enable": true,
|
||||
+ "job_type": "anomaly_detection",
|
||||
+ "keywords": [
|
||||
+ "app"
|
||||
+ ],
|
||||
+ "root_cause_num": 20,
|
||||
+ "detector": "slow-node-detection",
|
||||
+ "template": "slow_node",
|
||||
+ "model_config": {
|
||||
+ "name": "disruption_model",
|
||||
+ "params": {
|
||||
+ "record_kpi": false,
|
||||
+ "max_num_normal_results": 16,
|
||||
+ "look_back": 20,
|
||||
+ "obs_size": 5,
|
||||
+ "outlier_ratio_th": 0.6,
|
||||
+ "hccl_domain_json": "./hccl_domain.json",
|
||||
+ "rank_table_json": "./hccl_domain.json"
|
||||
+ }
|
||||
+ },
|
||||
+ "kpis": [
|
||||
+ {
|
||||
+ "metric": "gala_gopher_cpu_total_used_per",
|
||||
+ "entity_name": "sli",
|
||||
+ "atrend": "rise",
|
||||
+ "enable": true,
|
||||
+ "params": {
|
||||
+ "metric_type": "host",
|
||||
+ "method": "avg",
|
||||
+ "priority": 30,
|
||||
+ "alarm_filter_window_size": 5,
|
||||
+ "space_detector": null,
|
||||
+ "time_detector": {
|
||||
+ "preprocess_eps": 0.1,
|
||||
+ "preprocess_min_samples": 10,
|
||||
+ "type": "SlidingWindowKSigmaDetector",
|
||||
+ "n_sigma_method": {
|
||||
+ "type": "SlidingWindowNSigma",
|
||||
+ "training_window_size": 40,
|
||||
+ "min_update_window_size": 10,
|
||||
+ "min_std_val": 0.0001,
|
||||
+ "bias": 0.01,
|
||||
+ "abs_bias": 0,
|
||||
+ "nsigma_coefficient": 4,
|
||||
+ "detect_type": "upper_bound",
|
||||
+ "min_expert_lower_bound": null,
|
||||
+ "max_expert_lower_bound": null,
|
||||
+ "min_expert_upper_bound": 70,
|
||||
+ "max_expert_upper_bound": 80
|
||||
+ }
|
||||
+ },
|
||||
+ "type": "compute"
|
||||
+ }
|
||||
+ },
|
||||
+ {
|
||||
+ "metric": "gala_gopher_mem_util",
|
||||
+ "entity_name": "sli",
|
||||
+ "atrend": "rise",
|
||||
+ "enable": true,
|
||||
+ "params": {
|
||||
+ "metric_type": "host",
|
||||
+ "method": "sum",
|
||||
+ "priority": 20,
|
||||
+ "alarm_filter_window_size": 5,
|
||||
+ "space_detector": {
|
||||
+ "first_gap_rate": 0.3,
|
||||
+ "second_gap_rate": 0.2,
|
||||
+ "base_threshold": 150,
|
||||
+ "discrete_rate": 1.5,
|
||||
+ "nsigma_coefficient": 2,
|
||||
+ "discrete_point_suppression_ratio": 0.03,
|
||||
+ "non_major_anomaly_suppression": 0.1,
|
||||
+ "type": "OuterDataDetector"
|
||||
+ },
|
||||
+ "time_detector": {
|
||||
+ "preprocess_eps": 0.1,
|
||||
+ "preprocess_min_samples": 10,
|
||||
+ "type": "SlidingWindowKSigmaDetector",
|
||||
+ "n_sigma_method": {
|
||||
+ "type": "SlidingWindowNSigma",
|
||||
+ "training_window_size": 40,
|
||||
+ "min_update_window_size": 10,
|
||||
+ "min_std_val": 0.0001,
|
||||
+ "bias": 0.1,
|
||||
+ "abs_bias": 5,
|
||||
+ "nsigma_coefficient": 4,
|
||||
+ "detect_type": "upper_bound",
|
||||
+ "min_expert_lower_bound": null,
|
||||
+ "max_expert_lower_bound": null,
|
||||
+ "min_expert_upper_bound": 50,
|
||||
+ "max_expert_upper_bound": null
|
||||
+ }
|
||||
+ },
|
||||
+ "type": "compute"
|
||||
+ }
|
||||
+ },
|
||||
+ {
|
||||
+ "metric": "gala_gopher_disk_wspeed_kB",
|
||||
+ "entity_name": "sli",
|
||||
+ "atrend": "rise",
|
||||
+ "enable": true,
|
||||
+ "params": {
|
||||
+ "metric_type": "host",
|
||||
+ "method": "sum",
|
||||
+ "priority": 5,
|
||||
+ "alarm_filter_window_size": 30,
|
||||
+ "space_detector": null,
|
||||
+ "time_detector": {
|
||||
+ "preprocess_eps": 0.1,
|
||||
+ "preprocess_min_samples": 10,
|
||||
+ "type": "SlidingWindowKSigmaDetector",
|
||||
+ "n_sigma_method": {
|
||||
+ "type": "SlidingWindowNSigma",
|
||||
+ "training_window_size": 60,
|
||||
+ "min_update_window_size": 10,
|
||||
+ "min_std_val": 0.0001,
|
||||
+ "bias": 0.3,
|
||||
+ "abs_bias": 0,
|
||||
+ "nsigma_coefficient": 3,
|
||||
+ "detect_type": "lower_bound",
|
||||
+ "min_expert_lower_bound": null,
|
||||
+ "max_expert_lower_bound": null,
|
||||
+ "min_expert_upper_bound": null,
|
||||
+ "max_expert_upper_bound": null
|
||||
+ }
|
||||
+ },
|
||||
+ "type": "storage"
|
||||
+ }
|
||||
+ },
|
||||
+ {
|
||||
+ "metric": "gala_gopher_nic_tx_dropped",
|
||||
+ "entity_name": "sli",
|
||||
+ "atrend": "rise",
|
||||
+ "enable": true,
|
||||
+ "params": {
|
||||
+ "metric_type": "host",
|
||||
+ "method": "sum",
|
||||
+ "priority": 5,
|
||||
+ "alarm_filter_window_size": 5,
|
||||
+ "space_detector": null,
|
||||
+ "time_detector": {
|
||||
+ "preprocess_eps": 0.1,
|
||||
+ "preprocess_min_samples": 10,
|
||||
+ "type": "SlidingWindowKSigmaDetector",
|
||||
+ "n_sigma_method": {
|
||||
+ "type": "SlidingWindowNSigma",
|
||||
+ "training_window_size": 40,
|
||||
+ "min_update_window_size": 10,
|
||||
+ "min_std_val": 0.0001,
|
||||
+ "bias": 0.05,
|
||||
+ "abs_bias": 0,
|
||||
+ "nsigma_coefficient": 4,
|
||||
+ "detect_type": "upper_bound",
|
||||
+ "min_expert_lower_bound": null,
|
||||
+ "max_expert_lower_bound": null,
|
||||
+ "min_expert_upper_bound": 10,
|
||||
+ "max_expert_upper_bound": null
|
||||
+ }
|
||||
+ },
|
||||
+ "type": "network"
|
||||
+ }
|
||||
+ },
|
||||
+ {
|
||||
+ "metric": "gala_gopher_nic_tx_errs",
|
||||
+ "entity_name": "sli",
|
||||
+ "atrend": "rise",
|
||||
+ "enable": true,
|
||||
+ "params": {
|
||||
+ "metric_type": "host",
|
||||
+ "method": "sum",
|
||||
+ "priority": 5,
|
||||
+ "alarm_filter_window_size": 5,
|
||||
+ "space_detector": null,
|
||||
+ "time_detector": {
|
||||
+ "preprocess_eps": 0.1,
|
||||
+ "preprocess_min_samples": 10,
|
||||
+ "type": "SlidingWindowKSigmaDetector",
|
||||
+ "n_sigma_method": {
|
||||
+ "type": "SlidingWindowNSigma",
|
||||
+ "training_window_size": 40,
|
||||
+ "min_update_window_size": 10,
|
||||
+ "min_std_val": 0.0001,
|
||||
+ "bias": 0.05,
|
||||
+ "abs_bias": 0,
|
||||
+ "nsigma_coefficient": 4,
|
||||
+ "detect_type": "upper_bound",
|
||||
+ "min_expert_lower_bound": null,
|
||||
+ "max_expert_lower_bound": null,
|
||||
+ "min_expert_upper_bound": 10,
|
||||
+ "max_expert_upper_bound": null
|
||||
+ }
|
||||
+ },
|
||||
+ "type": "network"
|
||||
+ }
|
||||
+ },
|
||||
+ {
|
||||
+ "metric": "npu_chip_info_temperature",
|
||||
+ "entity_name": "sli",
|
||||
+ "atrend": "rise",
|
||||
+ "enable": true,
|
||||
+ "params": {
|
||||
+ "metric_type": "device",
|
||||
+ "method": "max",
|
||||
+ "priority": 25,
|
||||
+ "alarm_filter_window_size": 12,
|
||||
+ "space_detector": null,
|
||||
+ "time_detector": {
|
||||
+ "preprocess_eps": 0.1,
|
||||
+ "preprocess_min_samples": 10,
|
||||
+ "type": "SlidingWindowKSigmaDetector",
|
||||
+ "n_sigma_method": {
|
||||
+ "type": "SlidingWindowNSigma",
|
||||
+ "training_window_size": 40,
|
||||
+ "min_update_window_size": 10,
|
||||
+ "min_std_val": 0.0001,
|
||||
+ "bias": 0.01,
|
||||
+ "abs_bias": 0,
|
||||
+ "nsigma_coefficient": 4,
|
||||
+ "detect_type": "upper_bound",
|
||||
+ "min_expert_lower_bound": null,
|
||||
+ "max_expert_lower_bound": null,
|
||||
+ "min_expert_upper_bound": 70,
|
||||
+ "max_expert_upper_bound": 100
|
||||
+ }
|
||||
+ },
|
||||
+ "type": "compute"
|
||||
+ }
|
||||
+ },
|
||||
+ {
|
||||
+ "metric": "npu_chip_info_hbm_used_memory",
|
||||
+ "entity_name": "sli",
|
||||
+ "atrend": "rise",
|
||||
+ "enable": true,
|
||||
+ "params": {
|
||||
+ "metric_type": "device",
|
||||
+ "method": "max",
|
||||
+ "priority": 30,
|
||||
+ "alarm_filter_window_size": 5,
|
||||
+ "space_detector": {
|
||||
+ "dist_metric": "euclidean",
|
||||
+ "eps": 0.4,
|
||||
+ "cv_threshold": 0.03,
|
||||
+ "min_samples": 2,
|
||||
+ "window_size": 100,
|
||||
+ "scaling": false,
|
||||
+ "type": "SlidingWindowDBSCAN"
|
||||
+ },
|
||||
+ "time_detector": {
|
||||
+ "preprocess_eps": 0.1,
|
||||
+ "preprocess_min_samples": 10,
|
||||
+ "type": "SlidingWindowKSigmaDetector",
|
||||
+ "n_sigma_method": {
|
||||
+ "type": "SlidingWindowNSigma",
|
||||
+ "training_window_size": 40,
|
||||
+ "min_update_window_size": 10,
|
||||
+ "min_std_val": 0.0001,
|
||||
+ "bias": 0.02,
|
||||
+ "abs_bias": 5,
|
||||
+ "nsigma_coefficient": 4,
|
||||
+ "detect_type": "upper_bound",
|
||||
+ "min_expert_lower_bound": null,
|
||||
+ "max_expert_lower_bound": null,
|
||||
+ "min_expert_upper_bound": null,
|
||||
+ "max_expert_upper_bound": null
|
||||
+ }
|
||||
+ },
|
||||
+ "type": "compute"
|
||||
+ }
|
||||
+ },
|
||||
+ {
|
||||
+ "metric": "npu_chip_info_aicore_current_freq",
|
||||
+ "entity_name": "sli",
|
||||
+ "atrend": "rise",
|
||||
+ "enable": true,
|
||||
+ "params": {
|
||||
+ "metric_type": "device",
|
||||
+ "method": "max",
|
||||
+ "priority": 30,
|
||||
+ "alarm_filter_window_size": 5,
|
||||
+ "space_detector": {
|
||||
+ "dist_metric": "euclidean",
|
||||
+ "eps": 0.4,
|
||||
+ "cv_threshold": 0.03,
|
||||
+ "min_samples": 2,
|
||||
+ "window_size": 100,
|
||||
+ "scaling": true,
|
||||
+ "type": "SlidingWindowDBSCAN"
|
||||
+ },
|
||||
+ "time_detector": {
|
||||
+ "preprocess_eps": 0.1,
|
||||
+ "preprocess_min_samples": 10,
|
||||
+ "type": "SlidingWindowKSigmaDetector",
|
||||
+ "n_sigma_method": {
|
||||
+ "type": "SlidingWindowNSigma",
|
||||
+ "training_window_size": 40,
|
||||
+ "min_update_window_size": 10,
|
||||
+ "min_std_val": 0.0001,
|
||||
+ "bias": 0.05,
|
||||
+ "abs_bias": 0,
|
||||
+ "nsigma_coefficient": 4,
|
||||
+ "detect_type": "lower_bound",
|
||||
+ "min_expert_lower_bound": null,
|
||||
+ "max_expert_lower_bound": null,
|
||||
+ "min_expert_upper_bound": 10,
|
||||
+ "max_expert_upper_bound": null
|
||||
+ }
|
||||
+ },
|
||||
+ "type": "compute"
|
||||
+ }
|
||||
+ },
|
||||
+ {
|
||||
+ "metric": "npu_chip_roce_tx_err_pkt_num",
|
||||
+ "entity_name": "sli",
|
||||
+ "atrend": "rise",
|
||||
+ "enable": true,
|
||||
+ "params": {
|
||||
+ "metric_type": "device",
|
||||
+ "method": "max",
|
||||
+ "priority": 30,
|
||||
+ "alarm_filter_window_size": 5,
|
||||
+ "space_detector": null,
|
||||
+ "time_detector": {
|
||||
+ "preprocess_eps": 0.1,
|
||||
+ "preprocess_min_samples": 10,
|
||||
+ "type": "SlidingWindowKSigmaDetector",
|
||||
+ "n_sigma_method": {
|
||||
+ "type": "SlidingWindowNSigma",
|
||||
+ "training_window_size": 40,
|
||||
+ "min_update_window_size": 10,
|
||||
+ "min_std_val": 0.0001,
|
||||
+ "bias": 0.05,
|
||||
+ "abs_bias": 0,
|
||||
+ "nsigma_coefficient": 4,
|
||||
+ "detect_type": "upper_bound",
|
||||
+ "min_expert_lower_bound": null,
|
||||
+ "max_expert_lower_bound": null,
|
||||
+ "min_expert_upper_bound": 10,
|
||||
+ "max_expert_upper_bound": null
|
||||
+ }
|
||||
+ },
|
||||
+ "type": "network"
|
||||
+ }
|
||||
+ }
|
||||
+ ],
|
||||
+ "features": [
|
||||
+ {
|
||||
+ "metric": "gala_gopher_container_cpu_usage_seconds_total"
|
||||
+ }
|
||||
+ ]
|
||||
+}
|
||||
\ No newline at end of file
|
||||
--
|
||||
2.33.0
|
||||
|
||||
121
0002-configure-group-in-json.patch
Normal file
121
0002-configure-group-in-json.patch
Normal file
@ -0,0 +1,121 @@
|
||||
From acefcbdbb4891aa0b3f1b7afe500b8fdef440806 Mon Sep 17 00:00:00 2001
|
||||
From: huangbin <huangbin58@huawei.com>
|
||||
Date: Fri, 8 Nov 2024 16:42:52 +0800
|
||||
Subject: [PATCH] configure-group-in-json
|
||||
|
||||
---
|
||||
anteater/model/detector/slow_node_detector.py | 28 +++++++++++--------
|
||||
config/module/slow_node_detection.job.json | 9 ++++--
|
||||
2 files changed, 24 insertions(+), 13 deletions(-)
|
||||
|
||||
diff --git a/anteater/model/detector/slow_node_detector.py b/anteater/model/detector/slow_node_detector.py
|
||||
index 15a6cee..d5d10e1 100644
|
||||
--- a/anteater/model/detector/slow_node_detector.py
|
||||
+++ b/anteater/model/detector/slow_node_detector.py
|
||||
@@ -55,6 +55,9 @@ class SlowNodeDetector(Detector):
|
||||
hccl_domain = json.load(f_out)
|
||||
except Exception:
|
||||
logger.error(f"Read hccl domain info fail!")
|
||||
+ if not hccl_domain:
|
||||
+ # 增加手动设置hccl_domain
|
||||
+ hccl_domain = params.get("hccl_domain", {})
|
||||
if os.path.exists(rank_table_path):
|
||||
try:
|
||||
with open(rank_table_path, 'r', encoding='utf-8') as f_out:
|
||||
@@ -106,15 +109,15 @@ class SlowNodeDetector(Detector):
|
||||
# 获取machine_ids,
|
||||
machines_to_devices = self.get_machines_to_devices(start, end, kpis)
|
||||
npu_id2host_id, hosts_ids = self.npu_id2host_id(machines_to_devices)
|
||||
-
|
||||
group_dataloader = GroupDataLoader(self.hccl_domain, self.rank_table, machines_to_devices)
|
||||
group_ranks: list = group_dataloader.get_group_ranks()
|
||||
all_results = []
|
||||
for kpi in kpis:
|
||||
- for ranks in group_ranks:
|
||||
+ for index, ranks in enumerate(group_ranks):
|
||||
+ logger.info(f"Groups-{index}, metric: {kpi.metric}, start detection.")
|
||||
machine_ids: dict = group_dataloader.rank_table_loader.get_group_nodes_by_ranks(ranks)
|
||||
host_ids: list = self.get_host_ids_by_npu_ids(machine_ids, npu_id2host_id, hosts_ids)
|
||||
- group_result = self.group_detect_single_kpi(kpi, machine_ids, host_ids)
|
||||
+ group_result = self.group_detect_single_kpi(kpi, machine_ids, host_ids, ranks)
|
||||
all_results.extend(group_result)
|
||||
|
||||
response, all_anomaly_nodes = self.gen_final_alarm(kpis, all_results)
|
||||
@@ -148,19 +151,26 @@ class SlowNodeDetector(Detector):
|
||||
|
||||
return response, all_anomaly_nodes
|
||||
|
||||
- def group_detect_single_kpi(self, kpi: KPI, machine_ids: dict, host_ids: list) -> list:
|
||||
+ def group_detect_single_kpi(self, kpi: KPI, machine_ids: dict, host_ids: list, ranks) -> list:
|
||||
"""Detects kpi based on signal time series anomaly detection model"""
|
||||
# 普罗会一次性抓到所有的数据,需要根据machine_id, device_id去对数据作分组
|
||||
- # get数据
|
||||
metric_name: str = kpi.metric
|
||||
|
||||
all_machines_ts = []
|
||||
for machine_id in machine_ids:
|
||||
single_machine_ts_list = self.get_kpi_ts_list(metric_name, machine_id, kpi.params)
|
||||
- all_machines_ts.extend(single_machine_ts_list)
|
||||
+ if single_machine_ts_list:
|
||||
+ # 根据ranks匹配组内device的指标
|
||||
+ local_ranks = [int(rank) % 8 for rank in ranks]
|
||||
+ for single_machine_ts in single_machine_ts_list:
|
||||
+ ts_id = int(single_machine_ts.labels.get("id", -1))
|
||||
+ if ts_id in local_ranks:
|
||||
+ all_machines_ts.append(single_machine_ts)
|
||||
+
|
||||
for host_id in host_ids:
|
||||
single_machine_ts_list = self.get_kpi_ts_list(metric_name, host_id, kpi.params)
|
||||
all_machines_ts.extend(single_machine_ts_list)
|
||||
+ logger.info(f"Metric-{metric_name} single group has data {len(all_machines_ts)}. ranks: {ranks}")
|
||||
|
||||
anomaly_devices = []
|
||||
anomaly_locations = {}
|
||||
@@ -195,7 +205,7 @@ class SlowNodeDetector(Detector):
|
||||
logger.info(
|
||||
f"space_nodes_compare result: {self.output_anomaly_devices(metric_name, space_anomaly_locations)}.")
|
||||
else:
|
||||
- logger.info(f"Skip space nodes compare, due to nodes number{len(all_machines_ts)} is smaller than 4.")
|
||||
+ logger.info(f"Skip space nodes compare, due to nodes number {len(all_machines_ts)} is smaller than 4.")
|
||||
else:
|
||||
logger.info(f"Skip space nodes compare.")
|
||||
|
||||
@@ -287,10 +297,6 @@ class SlowNodeDetector(Detector):
|
||||
look_back = self.config.params.get("look_back", 10)
|
||||
metric_type = kpi_params.get("metric_type", "device")
|
||||
start, end = dt.last(minutes=look_back)
|
||||
- # from datetime import timedelta
|
||||
- # # 6:40
|
||||
- # start = start - timedelta(hours=4.5)
|
||||
- # end = end - timedelta(hours=4.5)
|
||||
|
||||
if metric_type == "device":
|
||||
# npu device
|
||||
diff --git a/config/module/slow_node_detection.job.json b/config/module/slow_node_detection.job.json
|
||||
index 91ff621..27a6d53 100644
|
||||
--- a/config/module/slow_node_detection.job.json
|
||||
+++ b/config/module/slow_node_detection.job.json
|
||||
@@ -17,7 +17,12 @@
|
||||
"obs_size": 5,
|
||||
"outlier_ratio_th": 0.6,
|
||||
"hccl_domain_json": "./hccl_domain.json",
|
||||
- "rank_table_json": "./hccl_domain.json"
|
||||
+ "hccl_domain":{
|
||||
+ "pp": 2,
|
||||
+ "dp": 1,
|
||||
+ "tp": 1
|
||||
+ },
|
||||
+ "rank_table_json": "./rank_table.json"
|
||||
}
|
||||
},
|
||||
"kpis": [
|
||||
@@ -349,4 +354,4 @@
|
||||
"metric": "gala_gopher_container_cpu_usage_seconds_total"
|
||||
}
|
||||
]
|
||||
-}
|
||||
\ No newline at end of file
|
||||
+}
|
||||
--
|
||||
2.33.0
|
||||
|
||||
41
0003-remove-unuse-code.patch
Normal file
41
0003-remove-unuse-code.patch
Normal file
@ -0,0 +1,41 @@
|
||||
From 74a86e20d09cbe3bba0a776f4a1c72941267f7f5 Mon Sep 17 00:00:00 2001
|
||||
From: huangbin <huangbin58@huawei.com>
|
||||
Date: Sat, 9 Nov 2024 16:36:16 +0800
|
||||
Subject: [PATCH] remove-unuse-code
|
||||
|
||||
---
|
||||
.../model/rca/rca_graph/prune_bidirected_graph.py | 14 --------------
|
||||
1 file changed, 14 deletions(-)
|
||||
|
||||
diff --git a/anteater/model/rca/rca_graph/prune_bidirected_graph.py b/anteater/model/rca/rca_graph/prune_bidirected_graph.py
|
||||
index 96f3e0b..57c4c8c 100644
|
||||
--- a/anteater/model/rca/rca_graph/prune_bidirected_graph.py
|
||||
+++ b/anteater/model/rca/rca_graph/prune_bidirected_graph.py
|
||||
@@ -12,7 +12,6 @@ import os
|
||||
import json
|
||||
from typing import Dict
|
||||
import networkx as nx
|
||||
-import matplotlib.pyplot as plt
|
||||
from anteater.model.rca.rca_graph.utils import create_meta_graph
|
||||
from anteater.utils.log import logger
|
||||
|
||||
@@ -126,16 +125,3 @@ class PrunedMetaGraph:
|
||||
|
||||
return self._meta_graph
|
||||
|
||||
-def plot_network(graph, front_end_metric=None):
|
||||
- # 绘制图
|
||||
- pos = nx.circular_layout(graph) # 圆形布局,起到美化作用
|
||||
- color_values = []
|
||||
- for node in graph.nodes():
|
||||
- if node == front_end_metric:
|
||||
- color_values.append(1.0)
|
||||
- else:
|
||||
- color_values.append(0.25)
|
||||
- nx.draw(graph, pos, with_labels=True, font_weight="bold", node_color=color_values, cmap=plt.get_cmap('viridis'))
|
||||
- plt.title("DiGraph")
|
||||
- plt.show()
|
||||
-
|
||||
--
|
||||
2.43.0
|
||||
|
||||
Binary file not shown.
BIN
gala-anteater-1.2.1.tar.gz
Normal file
BIN
gala-anteater-1.2.1.tar.gz
Normal file
Binary file not shown.
@ -1,8 +1,8 @@
|
||||
%define debug_package %{nil}
|
||||
|
||||
Name: gala-anteater
|
||||
Version: 1.1.0
|
||||
Release: 1
|
||||
Version: 1.2.1
|
||||
Release: 4
|
||||
Summary: A time-series anomaly detection platform for operating system.
|
||||
License: MulanPSL2
|
||||
URL: https://gitee.com/openeuler/gala-anteater
|
||||
@ -11,14 +11,20 @@ BuildRoot: %{_builddir}/%{name}-%{version}
|
||||
BuildRequires: procps-ng python3-setuptools
|
||||
Requires: python3-gala-anteater = %{version}-%{release}
|
||||
|
||||
patch0: 0001-add-new-feature-slow-node-detection.patch
|
||||
patch1: 0002-configure-group-in-json.patch
|
||||
patch2: 0003-remove-unuse-code.patch
|
||||
|
||||
%description
|
||||
Abnormal detection module for A-Ops project
|
||||
|
||||
|
||||
%package -n python3-gala-anteater
|
||||
Summary: Python3 package of gala-anteater
|
||||
Requires: python3-APScheduler python3-kafka-python python3-joblib python3-numpy
|
||||
Requires: python3-pandas python3-requests python3-scikit-learn python3-pytorch
|
||||
Requires: python3-pyyaml
|
||||
Requires: python3-pyyaml python3-networkx python3-pyArango python3-statsmodels
|
||||
|
||||
|
||||
%description -n python3-gala-anteater
|
||||
Python3 package of gala-anteater
|
||||
@ -56,14 +62,17 @@ fi
|
||||
%config(noreplace) %{_sysconfdir}/%{name}/config/gala-anteater.yaml
|
||||
%config(noreplace) %{_sysconfdir}/%{name}/config/log.settings.ini
|
||||
%config(noreplace) %{_sysconfdir}/%{name}/module/app_sli_rtt.job.json
|
||||
%config(noreplace) %{_sysconfdir}/%{name}/module/container_disruption.job.json
|
||||
%config(noreplace) %{_sysconfdir}/%{name}/module/disk_throughput.job.json
|
||||
%config(noreplace) %{_sysconfdir}/%{name}/module/jvm_oom.job.json
|
||||
%config(noreplace) %{_sysconfdir}/%{name}/module/proc_io_latency.job.json
|
||||
%config(noreplace) %{_sysconfdir}/%{name}/module/rca.job.json
|
||||
%config(noreplace) %{_sysconfdir}/%{name}/module/sys_io_latency.job.json
|
||||
%config(noreplace) %{_sysconfdir}/%{name}/module/sys_nic_loss.job.json
|
||||
%config(noreplace) %{_sysconfdir}/%{name}/module/sys_tcp_establish.job.json
|
||||
%config(noreplace) %{_sysconfdir}/%{name}/module/sys_tcp_transmission_latency.job.json
|
||||
%config(noreplace) %{_sysconfdir}/%{name}/module/usad_model.job.json
|
||||
%config(noreplace) %{_sysconfdir}/%{name}/module/slow_node_detection.job.json
|
||||
/usr/lib/systemd/system/gala-anteater.service
|
||||
|
||||
%files -n python3-gala-anteater
|
||||
@ -72,6 +81,27 @@ fi
|
||||
|
||||
|
||||
%changelog
|
||||
* Mon Nov 11 2024 huangbin <huangbin58@huawei.com> - 1.2.1-4
|
||||
- solve conflict.
|
||||
|
||||
* Sat Nov 9 2024 huangbin <huangbin58@huawei.com> - 1.2.1-3
|
||||
- remove unuse code plot network.
|
||||
|
||||
* Fri Nov 8 2024 huangbin <huangbin58@huawei.com> - 1.2.1-2
|
||||
- Add new feature slow node detection.
|
||||
|
||||
* Tue Nov 5 2024 huangbin <huangbin58@huawei.com> - 1.2.1-1
|
||||
- Add new feature slow node detection.
|
||||
|
||||
* Sat Sep 21 2024 huangbin <huangbin58@huawei.com> - 1.2.0-3
|
||||
- Fixbug with rca time range extend.
|
||||
|
||||
* Wed Sep 18 2024 huangbin <huangbin58@huawei.com> - 1.2.0-2
|
||||
- Fixbug with large value exceed
|
||||
|
||||
* Sat Aug 31 2024 huangbin <huangbin58@huawei.com> - 1.2.0-1
|
||||
- Upgrade anteater version to 1.2.0
|
||||
|
||||
* Thu Aug 31 2023 Li Zhenxing <lizhenxing11@huawei.com> - 1.1.0-1
|
||||
- Upgrade anteater version to 1.1.0
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user